Colorings of the d-regular infinite tree

نویسندگان

  • Shlomo Hoory
  • Nathan Linial
چکیده

The existence of small d-regular graphs of a prescribed girth g is equivalent to the existence of certain codes in the d-regular infinite tree. We show that in the tree ‘‘perfect’’ codes exist, but those are usually not ‘‘graphic’’. We also give an explicit coloring that is ‘‘nearly perfect’’ as well as ‘‘nearly graphic’’. r 2004 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Colorings Yield Κ-bounded Spaces with Discretely Untouchable Points

It is well-known that every non-isolated point in a compact Hausdorff space is the accumulation point of a discrete subset. Answering a question raised by Z. Szentmiklóssy and the first author, we show that this statement fails for countably compact regular spaces, and even for ω-bounded regular spaces. In fact, there are κ-bounded counterexamples for every infinite cardinal κ. The proof makes ...

متن کامل

Extremal H-colorings of trees and 2-connected graphs

For graphs G and H, an H-coloring of G is an adjacency preserving map from the vertices of G to the vertices of H. H-colorings generalize such notions as independent sets and proper colorings in graphs. There has been much recent research on the extremal question of finding the graph(s) among a fixed family that maximize or minimize the number of H-colorings. In this paper, we prove several res...

متن کامل

Counting Colorings of a Regular Graph

At most how many (proper) q-colorings does a regular graph admit? Galvin and Tetali conjectured that among all n-vertex, d-regular graphs with 2d|n, none admits more q-colorings than the disjoint union of n/2d copies of the complete bipartite graph Kd,d. In this note we give asymptotic evidence for this conjecture, showing that the number of proper q-colorings admitted by an n-vertex, d-regular...

متن کامل

Sharp Phase Transition in the Random Stirring Model on Trees

We establish that the phase transition for infinite cycles in the random stirring model on an infinite regular tree of high degree is sharp. That is, we prove that there exists d0 such that, for any d ≥ d0, the set of parameter values at which the random stirring model on the rooted regular tree with offspring degree d almost surely contains an infinite cycle consists of a semi-infinite interva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2004